Anelastic Approximation of Compressible Isentropic Navier-Stokes Equations with Exterior Force
نویسندگان
چکیده
منابع مشابه
Global behavior of 1D compressible isentropic Navier-Stokes equations with a non-autonomous external force
* Correspondence: [email protected] College of Mathematics and Information Science, North China University of Water Sources and Electric Power, Zhengzhou 450011, People’s Republic of PR China Abstract In this paper, we study a free boundary problem for compressible Navier-Stokes equations with density-dependent viscosity and a non-autonomous external force. The viscosity coefficient μ is p...
متن کاملOn the isentropic compressible Navier-Stokes equation
In this article, we consider the compressible Navier-Stokes equation with density dependent viscosity coefficients. We focus on the case where those coefficients vanish on vacuum. We prove the stability of weak solutions for periodic domain Ω = T as well as the whole space Ω = R , when N = 2 and N = 3. The pressure is given by p = ρ , and our result holds for any γ > 1. In particular, we prove ...
متن کاملGlobal Existence for Id, Compressible, Isentropic Navier-stokes Equations with Large Initial Data
We prove the global existence of weak solutions of the Cauchy problem for the Navier-Stokes equations of compressible, isentropic flow of a polytropic gas in one space dimension. The initial velocity and density are assumed to be in L2 and L2 n BV respectively, modulo additive constants. In particular, no smallness assumptions are made about the intial data. In addition, we prove a result conce...
متن کاملWeak-strong uniqueness for the isentropic compressible Navier-Stokes system
We prove weak-strong uniqueness results for the isentropic compressible Navier-Stokes system on the torus. In other words, we give conditions on a strong solution so that it is unique in a class of weak solutions. Known weak-strong uniqueness results are improved. Classical uniqueness results for this equation follow naturally.
متن کاملOn the barotropic compressible Navier-Stokes equations
We consider barotropic compressible Navier-Stokes equations with density dependent viscosity coefficients that vanish on vacuum. We prove the stability of weak solutions in periodic domain Ω = T and in the whole space Ω = R , when N = 2 and N = 3. The pressure is given by p(ρ) = ρ and our result holds for any γ > 1. Note that our notion of weak solutions is not the usual one. In particular we r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 2017
ISSN: 2324-7991,2324-8009
DOI: 10.12677/aam.2017.69146